

CXA2096N

For the latest data sheet, please visit

Digital CCD Camera Head Amplifier

Description

The CXA2096N is a bipolar IC developed as a head amplifier for digital CCD cameras. This IC provides the following functions: correlated double sampling, AGC for the CCD signal, A/D sample and hold, blanking, A/D reference voltage, and an output driver.

Features

- High sensitivity made possible by a high-gain AGC amplifier
- Blanking function provided for the purpose of calibrating the CCD output signal black level
- Regulator output pin provided for A/D converter reference voltage
- Built-in sample-and-hold circuits for camera signals required by external A/D converters

Absolute Maximum Ratings

 Supply voltage 	Vcc	11	V
 Operating temperature 	Topr	-20 to +75	°C
 Storage temperature 	Tstg	-65 to +150	°C
Allowable power dissipation	PD	417	mW

Operating Conditions

Supply voltage	Vcc1, 2, 3 3.0 to 3.6	V
----------------	-----------------------	---

Applications

DVC/still cameras for consumer use

Structure

Bipolar silicon monolithic IC

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

www.sunnywale.com

Block Diagram and Pin Configuration

Pin Description

(Vcc1, 2, 3 = 3V)

Pin No.	Symbol	Pin voltage	Equivalent circuit	Description
1 3 19	GND2 GND3 GND1	GND		Ground.
2	PS	VTH = 1.5V	2 145 145 10µA 777 777 777 777	Power saving mode.
4	DRVOUT	Vrb to Vrb + 100mV	VRB = 1.35V 7777 7777 7777 7777 7777 7777 7777	Driver output for A/D converter capable of DC coupling. Dynamic range = 1Vp-p.
5 16 23	Vcc3 Vcc1 Vcc2	Vcc		Power supply.

SONY

Pin No.	Symbol	Pin voltage	Equivalent circuit	Description
6	N.C.			No connection; normally ground.
7	VRB	1.35V	1.35V 1.35V 1.35V 1.35K 1.35K 1.0µA ≩ 30k 777 777 777 777 777 777 777 7	 1.35V regulator output. Be sure to decouple this pin near the IC pins to prevent the oscillation and external noise when this pin is not used. (Recommended capacitor value: 4.7µF)
8	VRT	2.35V	2.35V 7.77 7	2.35V regulator output. Be sure to decouple this pin near the IC pins to prevent the oscillation and external noise when this pin is not used. (Recommended capacitor value: 4.7µF)
9	OFFSET	1.5 to 3V & 0V	50k 50k 50k 50k 50k 50k 50k 22k 1.5k 50µA 777 777 777 777 777 777 777 777 777 7	Controls the output offset. When 3V: VRB When 1.5V: VRB + 100mV When 0V (preset mode): VRB + 35mV
10	PBLK	VTH = 1.85V	30k 30k 30k 145 1.85V 30k 145 10 50µA 777 777	Camera signal preblanking pulse input. Active when Low. Calibrates the black level of the AGC output waveform. When PBLK is Low, the DRVOUT potential is forced to VRB.

-4-

Pin No.	Symbol	Pin voltage	Equivalent circuit	Description
11	XRS	VTH = 0.68V	$40\mu A$ 770 μA 145 24k 145 7k 777 $770\mu A$ 145 7k 777 777 777	Camera signal sample-and-hold pulse input.
12	CLPOB	VTH = 1.5V	30k 30k 30k 145 1.5V 30k 145 12 30k 50µA 777	Clamp pulse used to clamp the optical black portion of the camera signal after it passes through the AGC amplifier.
13	AGCCLP	Approx. 1.3V	$5k \leq 5k$ $5k \leq 5k$ 145 177 177 177 177	AGC clamp capacitor. (Recommended value: 0.1µF)
14	AGCCONT	1.5 to 3.0V	3.3k 3.3k 3.3k 3.3k 3.3k 3.4k 3.4k 3.4k	AGC gain control. When 1.5V: –1dB (Minimum gain) When 3.0V: 31.5dB (Maximum gain)

Pin No.	Symbol	Pin voltage	Equivalent circuit	Description
15	CCDLEVEL	CCD signal black level of DIN input approx. 2.2V	500 ₩ 340 777 777	Enables monitoring of the SH3 output camera signal.
17	SHP	VTH = 0.65V	20µA → 365µA ≤ 36k ↓ 145 ↓ 17	Preset level sample- and-hold pulse input.
18	SHD	Sampling	0.65V	Data level sample- and-hold pulse input.
20	CLPDM	VTH = 1.5V	30k 1.5V 30k 145 20) 30k 7/7 7/7 7/7	Clamp pulse used to clamp the dummy pixel portion of the input CCD signal.
21 22	PIN DIN	Black level approx. 2.1V	21) 145 200µA 777 777 777 777 777 777 777 7	CCD signal input.
24	ICONT	1.5 to 3V	2.25V $6k \ge 6k$ 45k 777 777 777 777 777	DRVOUT output waveform rise time control. When 1.5V: Maximum rise time When 3V: Minimum rise time

Electrical Characteristics

(Ta = 25°C, Vcc1, 2, 3 = 3V)

	tem	Symbol	Conditions	Min.	Тур.	Max.	Unit
Current consump	PS = OFF (PS indicates Power Save)	IDC	AGCCONT = 1.5V, open between VRT and VRB PS = 3V, ICONT = 3V	25.1	37.1	49.0	mA
-001	PS = ON	Idp	PS = 0V	0	1.8	4.2	-
	Maximum gain	A CONT max.	$DIN = 1\mu s$, 20mVp-p pulse AGCCONT = 3V, ICONT = 3V	28.5	31.3		
	Minimum gain	A CONT min.	DIN = 1 μ s, 500mVp-p pulse AGCCONT = 1.5V, ICONT = 3V		-0.8	1.4	dB
AGC	Range of gain variance	AGC G	A CON max. – A CON min.	27.1	32.1	_	
	Dynamic range maximum	AGCmax. D	AGCCONT = 3V DRVOUT output signal at saturation level	800	970	_	m\/
	Dynamic range typical	AGCtyp. D	AGCCONT = 2V DRVOUT output signal at saturation level	900	960	_	
	Offset high	CAOF high	OFFSET = 1.5V	80	98	_	
DRV	Offset low	CAOF low	OFFSET = 3.0V		2	5	mV
	Offset preset	CAOF pre	OFFSET = 0V	25	34	40	
	VRT DC level	VRTO	With a 400Ω load	2300	2340	2400	
REF	Vrb DC level	VRBO	With a 400Ω load	1300	1353	1400	mV
	Vrt – Vrg	ΔVR	With a 400Ω load	950	988	1050	
BLK	Offset	BLKOF	BLKOF (PBLK = 3V) – BLKOF (PBLK = 0V)	-15	9	30	mV
SH3	Dynamic range	SH3 D	DIN = 1µs, 1Vp-p pulse	600	790		mV

Electrical Characteristics Measurement Circuit

Measurement Timing Chart

Application Circuit

Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.

Description of Operation

Refer to the Block Diagram.

Operating Conditions

The camera signal processing system operates when PS is High.

Timing Chart (when Vcc = 3V)

CDS (SH1, SH2, SH3):

The CCD signal from the CCD image sensor is input to PIN and DIN where correlated double sampling (CDS) is performed by SH1, SH2 and SH3. The precharge level of the CCD output signal is sampled, held and output by the SH2 output, and the signal level is sampled, held and output by the SH3 output. SH1 and SH2 are the sample-and-hold circuits for the precharge level; SH3 is the sample-and-hold circuit for the signal level.

CDSCLP 1, 2:

CDSCLP1 and 2 stabilize the input signal DC level, clamp (CLPDM) the input signal during the idle transfer interval for the purpose of eliminating the AGC input offset, and adjust the DC level ([*1], [*2]) of SH2 and SH3 in line with VREF. CDSCLP1 is the clamp circuit for the precharge level, and CDSCLP2 is the clamp circuit for the signal level.

AGC:

AGC is the gain control amplifier for the camera signal.

The gain can be varied from -1 to +31dB by adjusting the AGCCONT voltage control VAGCCONT from 1.5 to 3.0V.

CAM SH:

CAM SH is the sample-and-hold circuit for synchronizing the data read-in timing for the external A/D. Sampling is possible according to the approximately 10ns sampling pulse width input to XRS.

AGCCLP:

The basic black level is set ([*3]) by clamping the AGC output waveform with the CLPOB clock during the OPB interval. When PBLK is High and CLPOB is Low, the clamping circuit operates, adjusting the AGCCLP current so that the DRVOUT potential equals the OFFSET potential (which is determined by the voltage applied to the OFFSET pin), thus setting the AGCCLP potential. The AGCCLP capacitance is connected to the AGCCLP pin.

DC SHIFT:

This circuit functions when AGCCLP operates, following the AGCCLP potential and forcing a DC shift of the AGC output waveform OPB interval to the basic black level. When AGCCLP is not operating, the basic black level is maintained at its previous setting.

BLK SW:

The black level is calibrated by blanking the black level signal of the AGC output waveform so that it does not fall below the basic black level and replacing the DC potential with VRB. ([*4]) The signal is blanked when PBLK is Low.

OFFSET:

OFFSET controls the DRV output waveform black level offset.

The offset of the DRVOUT camera signals can be adjusted when a voltage is applied to OFFSET. ([*5]) The voltage controlled by OFFSET is output as the DRV output DC offset via AGCCLP, DCSHIFT, CAMSH and BLKSW.

When the OFFSET voltage is 1.5 to 3.0V, DRVOUT DC can vary in a linear fashion from V_{RB} + 100mV to V_{RB} . In addition, when the OFFSET voltage is 0V, DRVOUT DC is preset to V_{RB} + 35mV.

DRV:

DRV drives the external A/D. The current that flows to the last-stage amplifier in DRV is controlled by applying voltage to the ICONT pin, making it possible to adjust the rise time of the output waveform, which affects the external A/D load capacitance. The variable range is 1.5 to 3V, with 1.5V yielding the maximum and 3V yielding the minimum. The optimum rise time for the external A/D input capacitance can be selected.

VRTDRV, VRBDRV:

These are the external A/D reference voltage drivers. These circuits are connected to A/D VRT and VRB, supplying 2.35V and 1.35V, respectively, when Vcc is 3V. The IC's internal primary voltage is also generated on the basis of the VRT and VRB voltage. (VRB, VB and VCENT)

POWER SAVE CONTROL:

The PS pin is the power save pin; the operating state is enabled when this pin is High, while the power saving function operates when it is Low.

Characteristics Graphs

AGCCONT control supply voltage characteristics VAGCCONT vs. Gain

AGCCONT control temperature characteristics AGCCONT vs. Gain

OFFSET control temperature characteristics VOFFSET vs. OFFSET

OFFSET control supply voltage characteristics VOFFSET vs. OFFSET

Maximum signal amplitude temperature characteristics

Maximum signal amplitude temperature characteristics (Min. gain) Tc vs. Vout

VRT, VRB, VRT – VRB temperature characteristics Tc vs. VRT, VRB, VRT – VRB

Package Outline Unit

1

b

Unit: mm

SONY CODE	SSOP-24P-L01
EIAJ CODE	SSOP024-P-0056
JEDEC CODE	

PACKAGE MATERIAL	EPOXY RESIN			
LEAD TREATMENT	SOLDER/PALLADIUM PLATING			
LEAD MATERIAL	42/COPPER ALLOY			
PACKAGE MASS	0.1g			

NOTE : PALLADIUM PLATING This product uses S-PdPPF (Sony Spec.-Palladium Pre-Plated Lead Frame).

Sales: Shenzhen Sunnywale Inc, www.sunnywale.com, awin@sunnywale.com, Wechat: 9308762